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Flux-lines through Calabi-Yau manifolds and related couplings 

Tristan Hubscht 
Department of Physics, University of Texas, Austin, TX 78712, USA 

Received 22 December 1987 

Abstract. The mixed Yukawa couplings of the 27 and 27* superfields to other superfields 
are studied in a model stemming from a superstring model compactified on a generic 
Calabi-Yau manifold. The coupling to the standard E,-algebra-valued flux-loop operator, 
as well as an analogous E,-invariant operator, is argued to be related to certain Yukawa 
couplings. A vacuum expectation value of the latter operator is shown to give masses to 
all E,-singlet scalar superfields, except for those stemming from the supergravity multiplet. 

1. Introduction 

It is by now standard [ 11 that, in an effective model stemming from a (9 + 1)-dimensional 
spacetime heterotic superstring compa , dabi-Yau manifold (A), the spectrum 
of massless superfields is obtained in ttrllls VI Lertain harmonic forms on -44. The fields 
which are phenomenologically most interesting are found as components of the E8 x Ex- 
algebra-valued connection 1-form$, restricted to the complex three-dimensional inter- 
nal A. Using the symmetry which reduces to CPT in four dimensions, it suffices to 
consider only antiholomorphic 1-forms, and hence elements of the Dolbeault 
cohomology groups. 

Initially, these forms are valued in the E8 x E8 bundle, the fibres of which transform 
as the adjoint (248, 1 ) 0 ( l ,  248). To ensure the cancellation of the Yang-Mills and 
gravitational anomalies, one imposes a constraint on the space of background spin 
and Yang-Mills connections. This has the important consequence that the components 
of the fibres of the E8 x E8 bundle, which transform as 3 of SU(3) c Ex, get identified 
with fibres of YuU, the tangent bundle of A (the holonomy of which is SU(3), from 
the definition of a Calabi-Yau manifold). We hereafter focus on antiholomorphic 
1-forms on A valued in 

V - t E n d  8 0 8 0 T . c 0 8 * O Y ~ O E n d  YWc 
248+(78, 1 ) O  (27,3) 0 ( 2 7 * , 3 * ) 0  (1,8) 

where 248 represents the adjoint of E,; the ‘other’ Ex, that commutes with SU(3), is 
irrelevant in the analysis below and we ignore it hereafter. Note that ‘End’ here and 
in the following denotes the group of only traceless endomorphisms. 

t Supported by the Roben A Welch Foundation and NSF Grants nos PHY 8503890 and PHY 8605978. 
$ The analysis is straightforwardly extended to include fermionic superpartners, so we focus here on the 
bosonic modes only. Recasting the results in a manifestly supersymmetric form is then easily achieved. 
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Upon a harmonic analysis on A, the relevant components of the Yang-Mills 
connection 1 -form in (9 + 1 )-dimensional spacetime, subject to the restrictions described 
above, are 

A g ( x ;  y )  = massive 

A P ( x ;  y )  = @ , ( ( x ) u Y ( y )  +massive 

A ; ( X ;  y )  = 6 ! ( x ) ~ j ' ( y )  +massive 

A",x; y )  = 6 f i ( x ) c p : a " ( y )  +massive 

where we have used greek, lower case and capital latin letters to denote covariant 
(form), contravariant (tangent) indices on A and E6 indices, respectively, while ( x ;  y ) 
denote the real four- and six-dimensional coordinates on the (local) product of the 
Minkowski and Calabi-Yau space. The forms U, U and cp are harmonic with respect 
to the a operator on A, the antiholomorphic part of the real exterior derivative, and 
are therefore elements of the Dolbeault cohomology groups indicated on the right of 
equations (1.2). 

Cubic Yukawa couplings of @ f ( x )  and those of 6F(x) are shown to arise from the 
original tree-level action [2] and the corresponding coupling coefficients were shown 
to be given by integrals on A, over triple products of u ' ( y )  and t . ' (y)  respectively. 
Our aim here is to derive mixed couplings of @ . f ( x )  and 6,f (x)  and relate their coupling 
coefficients to certain integrals over various forms on A. In §§ 2, 3 and 4 we do this 
for mixed couplings to other massless modes on A, and then also for the case of 
massive modes. The latter we show to reflect the effect of the so-called flux-loops. In 
§ 5 we discuss the phenomenological impact of the couplings derived and comment 
on certain analogies with recent exact string-theory results. Our concluding remarks 
constitute § 6 and some technical details are left for the appendix. 

In what follows we shall use only general features of Calabi-Yau manifolds. In 
particular, there exists a covariantly constant harmonic (3,0)-form, represented by its 
tensor coefficient wp,,,, its complex conjugate OGcb and the dual rank-3 totally anti- 
symmetric tensors eabc and Eab' . Moreover, employing the orthonormality relation 
given by the Hermitian inner product 

i = 1,. . . , dim HI(&,  9,) 

i= 1, .  . . , dim H ' ( A ,  Y$() 

n'= 1, .  . . , dim HI(&, End Y N )  

(1.2) 

a,, := (dzp, a,) 
one may define its 'inverse': 

6," := wpyu6 Yb6ucsabc 

together with the appropriate conjugates. We lower and raise tangent indices using 
the flat tangent metric 7.1," and its inverse 7.1". The isomorphisms 

HI(&, YwN) == H 2  ' ( A )  

H I ( &  9%) = 2 H = ( A l )  = H2(JU, Y.a) 

shall be used as well. 

2. Mixed couplings 

(1.3) 

The massless four-dimensional fields correspond to 0-modes of the Fourier expansion 
on A and therefore to harmonic forms as in equation (1.2). The groups HI(&, Y",), 



Flux-lines through Calabi- Yau manifolds and related couplings 3053 

HI(&, 9%) and HI(&, End 9.&) are of course 0-eigenspaces of the Laplace operator 
on A, but they are not irreducible. In fact all three of them are reducible [3] and 
naturally decompose into irreducible representations of the Holonomy group, SU(3)". 
This decomposition is straightforwardly obtained by using the 

P',*H'(&, End Sff) 2 P3*H1(A, Tff) = H1(A, Tff) (2.4) 

PIH'(A, 9:) P I H o ( A )  = Ho(&). 

It is then straightforward to identify, without loss of generality, the Kahler ( l , l ) - form 
with U ' E  BIH'(A,  FT*,), while U'E P8H1(A, YT*,) for T =  1 = 2 , .  . . , b,  

Following [2], we start with the interaction term in the original tree-level action: 

d,,, = d'OX v -glo Tr{h(X) . X(X) A (X)}. 5 I- 

Here we project d ) : ( ~ )  * u'I6(y)  from A(X), 6 , f ( x )  * u'lla8(y) from h(X) and keep only 
the integration on A. T3is yields the following generic coupling: 

b6 1 "  ~ Q ~ A D  Ir(x;  Y ) v b f i U r ?  

where the projection to the harmonic (6-) subset of the T,-valued (0, 1)-forms is made 
explicit in the second line, A i . ? f ( x ;  y )  includes the first and the last set of fields in 
(1.2), r ] b 6 A o l f ( ~ ;  y ) O  vlrAi.bb(X; y )  and we have abbreviated 

6 G C 6 6  bEE 
_ _ _  

E P Y W  := 

As massless modes of A p l r ( x ;  y )  would correspond to elements of HI(&), which is 
empty, A , , r ( x ; y )  expands into massive modes only. We shall return to these later 
and now we comment on the A p b 6 ( x ;  y ) .  
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Since AFb6(x; y )  v b 6 = 0 ,  the 0-modes correspond to H1(A,  End .TA) for which 
there is no straightforward method in general to obtain the rank [4]. Employing the 
equivalences in (2.4) a lower bound is, however, obtained [3]: 

rank HI(&, End TuH) 2 rank HI(&, T.#) (2.6) 
because rank P15H1(&, End T u )  3 0. Interestingly enough this result is confirmed 
away from the point-field theory limit, in which (2.6) was first derived, by considering 
fully fledged string theory on orbifolds which are resolved into Calabi-Yau manifolds 
and the analysis is valid through all finite orders of a perturbation series in the sizes 
of the resolutions [5]. The fact that exact string-theory results on a restricted class of 
Calabi-Yau manifolds and point-field-theoretic results for generic Calabi-Yau mani- 
folds coincide we find, while certainly not a full proof, at least a strong motivation 
for the subsequent analysis. 

3. Massless fields coupling to '27 * 27*' 

The 0-modes of Apbd(x; y )  are found to correspond to elements of P15Apb6(x; y )  and 
of P6.Apb6(x; y ) ,  the latter of which is, by equation (2.4), equivalent to the conjugates 
of elements of HI(&, TM) which, in turn, are used to describe the '27'. While we shall 
have nothing more concrete to say here regarding the modes of 9I5ACbb(x; y ) ,  it follows 
that the B6*A,b6(x; y )  may be treated in full analogy with the '27'. It has, on the other 
hand, recently been proved [6] that elements of HI(&, .TA) may be parametrised, for 
a very large class of Calabi-Yau manifolds, by certain polynomials [7]. This parametri- 
sation enables one, in principle, to study the action of any symmetry of A on HI(&, .TA) 
and therefore, via the second relation in (2.4), on P6*H'(&, End TA). More concretely, 
for 9 a (discrete) symmetry of &: 

- 1  under 9. 
H'(A, TA) 3 U' - RI 
=XP,*H'(A, End TM) 3 cp' - R: 

As the transformation properties of U' E HI(&, .T%) may be determined by indirect 
methods [8], the discrete symmetries may be used to restrict not only the '273' and 
'27*3' couplings but alsq the (u'cp'u ') c '27 1 27*' mixed couplings. The remaining 
couplings to c p ' ~  LP15Apbb(x; y )  are of course restricted as well, but there does not seem 
to exist a systematic and universal method to derive the transformation properties of 
these fields under discrete symmetries of A, 

Both (u'cp J~ ') and ( u'cprJ'v ') follow from equation (2.5) and we include their explicit 
form for completeness: 

(bfi""sva6- bfia"S~G"+tbPa"G~S,6)( v c ( , U ~ ) c ) c p y U b  I-6 

=: J b f i ~ " ( ~ , ( ~  p )  a ) ( c p ~ ; c '  6 , ) V '  ;=2 ,  ..., r a n k H ' ( 4 F 5 )  
.U 

where 1 labels elements of P8H'(A, 9%). We also obtain 

= O  for U = U' 

where the second line follows essentially from 6 0 1 5 6  1 in SU(3). 
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The explicit expressions for the coupling constants appear to be quite cumbersome 
and not very helpful unless a parametrisation is provided so that the integrals can 
actually be evaluated. It must be borne in mind that these expressions are just 
projections of the quite simple looking integral 

( u i C p f i n n ; )  = J, Flii.dui.a yr v a 6 ( P i .  f ib6 r ] b 6 V b  1-a i = j @ j '  

which is the explicit representation of the map 

HI(&, .T,)@H'(A, End T,)OH'(A, Y:)+C 

as induced by the definition of End .TA, as well as the existence of a covariantly 
constant harmonic (3,O)-fom on any At. With this in mind, the value of the above 
integrals depends only on the complex structure?. 

The couplings of massless 27 and 27* to the 6*- and 15-sector of E,-singlet matter 
superfields (those stemming from the Yang-Mills multiplet), with coupling coefficients 
(u'cpJv') and (u'~p'.'v'), might indeed be phenomenologically relevant as they can 
provide the right-handed neutrinos with a heavy mass [ 101. Since there are at least as 
many E6-singlet superfields as there are 27 (see equation (2.6)), the mass matrix for 
the neutrinos, their mirrors and the E6 singlets may indeed be realistic. Also, the 
'27 . 1 . 27*' terms in the superpotential, which correspond to the Yukawa couplings 

o : ( x ) 6 f i ( x ) 6 ; ( x )  a 7 1 7  * (u'Cpfiuu;) 

induce 

terms in the potential. Such 127 27*12 terms obviously play an important role in 
generating an intermediate scale. 

The E, singlets, however, receive masses through two-dimensional world-sheet 
instanton effects which are proportional to the compactification mass scale but damped 
by a factor proportional to exp( - R /  R with R being the size of the internal Calabi- 
Yau manifold [5]. This complicates the mass matrix and more detailed analysis in a 
concrete model is necessary, but it is possible to envision a pairing off of the E6 singlets 
with the right-handed neutrinos, leaving (nearly) massless left-handed neutrinos. At 
the same time, since exponentially suppressed masses are of the order of the desired 
'intermediate' mass scale in some models [ll], the effect of the terms (3.1) is not 
negligible. 

4. Massive fields coupling to '27 27*' 

The massive modes of the various fields of course decouple from the low-energy particle 
spectrum but their possible vacuum expectation values (VEV) may have an important 

t That this large degree of invariance is not spoiled by the projections (2.1)-(2.3), induced by the Lefschetz 
decomposition, follows from the highly topological properties of this decomposition itself; see, e.g., [9]. 
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impact on the low-energy phenomenology. We now look for such effects by concentrat- 
ing on the remaining two coup!ings which can be derived from (2.5). In particular, 
inserting v b 6 A G I ~ ( x ;  y )  for A , ; ! ( x ;  y )  in (2.5) we obtain 

@ ; ( x ) @ ( x )  I P = U 1 - " (  @ y ) v o n u 3 y )  * A d x ;  Y ) .  
U 

Let us now define 

u;y, (Y)  := q d j - , U y ( Y )  

& ( y )  := s 6 " U ~ " ( y )  

U y ( y ) = U ; "fi ( y ) s @ b s  

u;"(y)  = u : , ( y ) P "  

a bc 

which follow from the isomorphisms (1.3) and may be viewed as alternative definitions 
of s W a ,  6," and thus their conjugates as well. With these definitions, the above integral 
is 

( 4 . 1 )  I, &' lYuFir i .b  u;v,(Y)u:b(Y) * A d x ;  Y )  

which we rewrite more symbolically as 

(2, l ) ' ~ ( l ,  ~ ) ' A A , T ( x ) =  ( ~ , ~ ) " A A , T ( x )  I, 
with A,r(x) = A,,T(x; y )  d.?' being an E,-algebra-valued (0, I)-form on A. 

As indicated in the second expression, the wedge product U' A U' defines a b2 , x b, , 
matrix of (3,2)-forms which are %closed since U and U are. The integral on At over 
a kernel defined by this matrix of (3,2)-forms defines, together with the integrals over 
forms of conjugate type (see the appendix for a derivation), a set of integrals 
c c 

(3,2)'" I\ A , r ( X :  Y )  + CT $ dymAm,r (x ;  y )  m =  1 , .  . . , 6  (4.2) 
r(i F) 

where y is the real six-dimensional coordinate on At, and the closed contours r( i. i) 
are defined by the matrix of (3,2)-forms in the kernel of the integral ( 4 . l ) t .  

The expression (4.1) is, in view of ( 4 . 2 ) ,  formally the same as the exponent of the 
flux-loop operator 

W(T):= P exp( i f r  dy" A z 8 ' ( x ;  y )  =: P exp(iXp8'(x)) ) 
which is usually identified as the ordering parameter of the E6 breaking [ 1,121.  Here 
P is the path-ordering operator and r must be a non-contractible loop 'through' At if 
W(T) f 1.  The contour integral over A Z 8 ' ( x ;  y )  may be viewed as an effective adjoint 
Higgs scalar in four dimensions. While the coupling of this effective Higgs scalar to 
the four-dimensional massless '27 . 27*' pairs is determined by the integral (4 .1 )$ ,  the 
VEV depends on the background configuration of A Z 8 ' ( x ; y )  as much as on the 
contour(s). 

t One may think of the contour integral as a generalisation of a 'surface term'. 
t Viewed as a cubic Yukawa coupling in the superpotential, or the coupling of the 'effective' Higgs scalar 
to the superpartners of and 5, the VEV of the 'effective' Higgs scalar represents the mass of the '27 I 27*' 
pairs and the sign is irrelevant. 
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In complete analogy with the couplings to A,, i (x;  y )  we now derive the couplings 
to P3ACb6(x;  y ) .  Using the explicit form of g3 (2.3) we obtain 

@ ; ( x ) v l & ( x )  I, F@6ut-a( + Y ) ~ a a u A ~ ( . ~ )  * AF'(x; Y )  

I 

where 
AY'(X; y ) : =  -&8cb8P&4Apb6(X; y )  

results from the projections. Again, as in the case of Aclr(x;  y ) ,  we rewrite the integral 
as 

E r u m E ' P 6 ~ ~ , +  ( y ) ~ : ~ ( y )  A: )( X ;  y ) (4.3) 

which is completely analogous to (4.1) and leads to the same contour integral(s) as 
in equation (4.2), except that the integrand, and therefore the integral as well, is E, 
invariant. 

We have thus derived the couplings of the '27 27*' pairs of massless fields to two 
flux-loop integrals: 

@ : ( x ) & ! ( x )  (f dy" A',7;;(x; y ) O q l ~  f dy" A i ' ( x ;  y ) )  (4.4) 
i-( i. T) r( i. T )  

starting from the tree-level action of the original point-limit of the heterotic superstring 
model in (9 + 1)-dimensional spacetime. Assuming suitable background configurations 
for A"" and A( ' ) ,  to provide the above flux-loop integrals with non-vanishing VEV in 
the (3 + 1)-dimensional spacetime sense, the phenomenological properties of a concrete 
effective model can be changed significantly. 

5. Interpretation and phenomenological impact 

Note that (XF')(x)):= ($r dy" A',"'(x; y ) )  # 0 is interpreted as the E,-breaking ordering 
parameter, i.e. effective Higgs field in phenomenological applications which typically 
rely on point-limit analysis. It is crucial in this context as it is the only source of 
phenomenologically applicable breaking of E,. Actually, ( ~ V ; ' ) ( X ) )  # 0 cannot be a 
point-limit effect since it is defined to depend on a non-contractible path r. Since 
,3$')(x) and the expression (4.1), in view of (4.2), are formally identical, we are 
tempted to identify them, i.e. to think of the flux-loop operator W(T) as being generated 
by the expression (4.1) which we derived from the term in the point-limit action (2.5). 
Moreover, the expression (4.3) then defines a coupling of '27 27*' pairs to an analogous 
effective Higgs field, %'i!)(x). 

Unlike A',"', A i )  makes no distinction between different components in the '27' 
and in the '27*', thus 'switching on' the singlet VEV seems to give superheavy mass to 
all '27 * 27*' pairs. This is however not quite so, and several remarks are in order. 

(i) As long as I ' ( i F )  are non-contractible, the contour integrals in (4.4) cannot be 
related by Stokes' theorem to any surface integral over the corresponding field strengths. 
Consequently, the value of (%';") and (%':)) on one hand and those of (F!,',:') and 
(Fk!,)  on the other can be chosen independently so as to be consistent with the standard 
ansatz. Finding explicit solutions for a background configuration of (A','''(x; y ) )  and 
(A\')(x; y ) )  such as to yield the desired pattern of VEV is certainly addressable only 
for concrete models. 
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(ii) A glance at the 'holomorphic part' of the contour integral in equations (4.2) 
and (4.1): 

E W E I i  fie p*u; 7 o" U;" Lup = 
- J,, 

especially in its third form given here, reveals that, in the i= 1 case, when u b ' a  6," 
corresponding to the Kahler (1, 1)-form, the integral is projected onto [ ( P 3 = u I i a ) .  . .] 
which have no 0-modes on any Calabi-Yau manifold. Therefore, the couplings we 
have derived from the original tree-level action do not couple the massless '27*' 
represented by the Kahler ( l , l ) - form to massless '27' all of which are represented by 
??6uGa. If the effect of the standard (adj(E,)-valued) flux-loop is indeed generated 
from this coupling, it leaves an entire '27*' massless! 

(iii) Just as to '27 27*' pairs, P3Afia"(x; y )  couples to p6*AGa"(x; y )  and 
BlsAjad(x;  y )  pairs as well, and the corresponding explicit integrals are found straight- 
forwardly. Suffice it here just to say that 

J F l i G r i ( ? ? p A ~ R i r ( y ) ) 7 a h ( P g A ~ b b ( ~ ) ) 7 ~ ~ ( ~ 3 A , C ~ ( ~ ;  y ) ) r i z a  (5.1) 

define the couplings of an effective E,-singlet four-dimensional Higgs scalar? to cp'(x) 
and cp"(x), the massless fields represented by harmonic forms in HI(&, End 9 - u ) .  

The integral (5.1), non-vanishing in general, is not the one in (4.1) and (4.3), and 
there is no natural way to associate (5.1) with a (real) contour integral; all of them, 
however, depend on the background value of A',". If this background value is 
non-vanishing, the integral in (5.1) acquires a VEV and provides a mass term for cp(x) 
and cp'(x). In the basis cpOcp', the mass matrix takes the form 

P, Q = 6*, 15 
.U 

(: 3 
where the submatrix B represents cpcp' mixing terms and DA is antisymmetric in the 
basis of cp'. As long as B # 0, the eigenvalues are non-vanishing. This implies that a 
non-vanishing background configuration of A',"( x; y )  provides, in general, masses for 
all of the 0-modes of Afiad(x; y ) ,  corresponding to elements of HI(&, End YuM). 
Remarkably, this qualitativeIy resembles the effect of the world-sheet instantons, 
re-derived by exact string-theory methods [ 51. 

(iv) Just as the standard flux-loop operator, the E6-singlet contour integral is 
ineffective on the '27*' represented by the Kahler (1, 1)-form leaving it massless. All 
the other '27 27*' pairs receive superheavy masses, which seems to contradict the 
exact string-theory result [ 5 ]  that, barring standard flux-loop effects, all '27 * 27*' pairs 
remain massless. This, however, was derived for orbifolds, disingularised through 
blowing up their singular points, so that the resulting space is a Calabi-Yau manifold 
A. These manifolds are however simply connected, so that there can be no non- 
vanishing flux-loop integrals. While this reconciles our result with the exact string- 
theory result, it would certainly be important to check it for the case non-simply- 
connected Calabi-Yau manifolds. This first of all requires the construction of desin- 
gularised orbifolds which are multiply connected and then apply the methods of [ 5 ] ,  
a task which is clearly beyond the scope of this paper. 

t This effective Higgs scalar is different from 3?L'''(x) but both are generated by an integral over A',"(x; y )  
on A, with a d-closed form as the kernel. 
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(v) The 0-modes of the supergravity multiplet do not couple to the fields we have 
considered here [ I ]  so they do not receive masses by the effects derived here. This 
also coincides with the exact string-theory results [5]. 

6. Conclusions 

We consider the point-field limit of the E8 x E8 heterotic superstring compactified on 
a generic Calabi-Yau manifold. To complement the existing literature [ 2 ] ,  we derive 
from the original tree-level action the mixed couplings of the (super)fields transforming 
as 27 and 27* of E, to E,-invariant (super)fields cp and cp', the latter two corresponding 
to elements of H ' (A,  End In addition, we derive the couplings of '27 27*' pairs 
to contour integrals over the massive fields AL'*)(x; y )  and P,A,""(x;  y )  = AV)(x ;  y ) .  

The coupling to the integral over A','*)(X; y )  is shown to strikingly resemble, if not 
equal, the coupling to the (linearised) standard flux-loop operator. The coupling to 
the integral over P3A,"'(x; y )  is shown to be analogous to that over A','*'(x; y ) ,  and 
both of these define effective four-dimensional Higgs scalars. Suitable non-vanishing 
background configurations of AY8'(x;  y )  and P 3 A G n d ( x ;  y )  are shown to give masses 
to '27 27*' pairs provided At is multiply connected. A suitably chosen non-vanishing 
background configuration of 9,Ai . '"(x;  y )  is shown to render all the E,-singlet scalar 
(super)fields massive, except for those stemming from the supergravity multiplet, 
regardless of 7rl (4). 

While the results obtained here qualitatively resemble some recent exact string 
theory results, more quantitative results cannot be obtained for a generic Calabi-Yau 
manifold; hopefully this is possible for concrete examples. The fact that the world-sheet 
instanton effects, to which the couplings to P 3 A o a d ( x ;  y )  seemingly correspond, yield 
mass terms which are exponentially damped with the size of At (in Planck units) is 
hard to match in the present analysis. As a matter of fact, this property may be an 
indication that the world-sheet instanton effects are indeed distinct from those of the 
integral (5.1). To the best of my understanding however, this can be decided only 
upon the explicit evaluation of (5.1) which is hopefully possible in a concrete model. 

Finally, let me note that the curious property of the couplings to the contour 
integrals (4.1) and (4.3) (they are orthogonal to the '27*' represented by the Kahler 
(1, 1)-form of At) does not match the commonly believed universality of the flux-loop 
operator. This mismatch appears to I-? the only obstruction to interpreting (4.1) and 
(4.3) as the couplings which generate the couplings to the corresponding flux-loop 
operators. I do not however know of a proof of such a universality. 
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Appendix. The contour integrals 

We here address the derivation (and explanation) of the relation (4.2) or rather the 
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more general relation: 

where the real 1-form A decomposes into U,  a holomorphic (0, 1)-form, and a form 
of conjugate type. 

First we study the properties of the RHS of equation (Al).  Note first of all that for 
any I-cycle r on A and any d-closed 1-form w ,  , 

f r w , = i ,  Y A W 1  y E Hs(A).  

However, H5(A) = 0 for any Calabi-Yau manifold whereby I, w ,  must vanish for 
every closed 1-form w ,  and 1-cycle I' on a Calabi-Yau manifold. Therefore, in order 
for 

Y@"(X) := dy" Acs'(x; y )  # 0 f r 
and enable E6 gauge symmetry breaking, A',"'(x; y )  dy" must not be d-closed on A. 
Therefore, when looking for a background configuration for A',"'(x; y )  one has to 
study the space of 1-forms modulo closed I-forms. Since H ' (A)  vanishes on every 
Calabi-Yau manifold, a closed 1-form must be an exact one, i.e. one is looking for 
background gauge fields obeying af:AY;'(x; y )  # 0 and therefore equivalent by 'pure 
gauges': a',y'S'7s'(x; y ) ,  for some E,-algebra-valued scalar S(")(x; y ) .  

matrix of (3,2)-forms consists of d-closed forms since U' and U' are harmonic (and 
therefore closed as well). Together with the term of conjugate type, the wedge product 
u i  A U' defines a b2 I x b, matrix of d-closed 5-forms? which must be d-exact as 
H 5 ( A )  = 0 on any Calabi-Yau manifold. This we write as 

Consider now the first of the integrals in the LHS of equation (Al) .  The b, , x b, 

U' A u ' + c r = d 6 ' '  6 ° C  A:(A) (A2) 

where A;(A) is the space of r-forms with coefficients locally integrable on A. One 
next defines currents (see Griffiths and Harris, pp 366-85, in [9] for a rigorous account): 

(1) gFs E %:'(A) for 6 an r-form with coefficients locally integrable on A: iFFs((p) := 
j M 6 ~ ( p  for QEA( ," - : ' ) (A )  where g r ( A )  is the space of currents of degree r and 
A:(&) is the space of C" r-forms on A ;  

(2)  d: %?(At)+ W+'(A): df?Fs((p) = (-l)r+'38(d(p) for (p E 
(3) &-E %:'At for r a piecewise smooth ( n  -r)-chain on A: 3r(p) :=Jr  (p for (p E 

It then follows that for any piecewise smooth (n-r)-cycle r, 3 6 ~ A i ( A ) ,  the 
restriction of which to A - is E A:(& - I') and for which d.9 is a d-closed ( r +  1)-form 
on A - r, such that the equation of currents: 

A?-')(&). 

T This is most easily seen by starting with the fact that the product of a harmonic 3-form and a harmonic 
2-form is a d-closed 5-form. Now one decomposes the 3- and the 2-form according to their ( p ,  q )  type. 
Keeping the non-vanishing terms the above statement is confirmed. 
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holds. In our situation, for every smooth 1-cycle 
such that 

in ( A l )  there exists a 4-form 8 

f r  A‘78’ = -I, 6 A dA‘78’ - [.H d 6  A A”” (A3) 

and the identification of this 19 with the elements of 6” in (A2) is straightforward. 
While the second integral in (A3) corresponds to that in the coupling (4.1), the 

first one is obtained by integration by parts, so that the contour integral appears as a 
‘surface term’. In this sense, the integral in (4.1) ‘generates’ that in (4.2). Note that, 
since d A Z 0 ,  as derived at the beginning of this appendix, (A3) does not imply an 
identity between the r-contour integral and the integral with the ( d 6  A )  kernel, but 
rather an equioalence of these, up to integrals with the (6  A d)  kernel. Clearly, for a 
concrete model and an explicit parametrisation of U ’  and U ’ ,  this equivalence relation 
may indeed be found to imply an identity, or else the integrals with the (6 A d)  kernel 
might be estimated or even evaluated. 
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